15ME63

(08 Marks)

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 **Heat Transfer**

GB(GS) S(GHEME

Time: 3 hrs.

USN

1

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of Heat and Mass Transfer data handbook is permitted.

Module-1

- Derive the 3-D heat conduction equation in Cartesian coordinate system for an isotropic a. material. Also write special forms of 3-D heat conduction equation. (08 Marks)
- A furnace wall is made up of three layers of thickness 250 mm, 100 mm, 150 mm with b. thermal conductivities of 1.65, K, 9.2 W/m-K respectively. The inside is exposed to gases at 1250°C with convection coefficient of 25 W/m²-K and outside surface is exposed to air at 25°C with convection coefficient of 12 W/m²-K, inside surface is maintained at 1100°C. Determine:
 - The unknown thermal conductivity (i)
 - (ii) Overall heat transfer coefficient
 - (iii) All surface temperatures.

OR

- Explain the modes of heat transfer with corresponding governing laws. (06 Marks) a.
- Explain the three kinds of boundary conditions to solve conduction problems. b. (04 Marks) A wall of steam boiler furnace is made of layers of fire clay of thickness 12.5 cm с.
 - $(K_1 = 0.28 + 0.00023T \text{ W/m}^{\circ}\text{C})$ and red brick of 50 cm $(K_2 = 0.7 \text{ W/m}^{\circ}\text{C})$ where T is in °C. The inside surface temperature of fire clay is 1100°C and outside brick wall temperature is 50°C. Calculate the amount of heat loss per unit area of the furnace wall and the temperature at the interface. (06 Marks)

Module-2

- What do you mean by critical thickness of insulation? Derive an expression for critical a. thickness of insulation for cylinder. (05 Marks)
 - b. In a thermal conductivity measuring experiment two identical long rods are used. One rod is made of aluminium (K = 200 W/m-K). The other rod is specimen. One end of both the rods is fixed to a wall at 100°C, while the other end is suspended in air at 25°C. The steady temperature at the same distance along the rods were measured and found to be 75°C on aluminium and 60°C on specimen rod. Find thermal conductivity of the specimen. Assume (05 Marks) that the fin is insulated at the tip.

Show that the temperature distribution under lumped analysis is given by,

$$\frac{1-1_{\infty}}{T} = e^{-BiFo}$$

(06 Marks)

(04 Marks)

(04 Marks)

where T_i is the initial temperature and T_{∞} is the surrounding temperature.

OR

What is the main purpose of fins? Define fin efficiency and fin effectiveness. a. What are Heisler charts? Explain their significance in solving transient conduction problems. b.

1 of 3

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42-8 = 50, will be treated as malpractice. important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2

3

C.

4

- c. A 12 mm diameter mild steel sphere at 540°C is exposed to cooling air flow at 27°C and heat transfer coefficient of 114 W/m2-K. Find:
 - (i) The time required to cool the sphere from 540° C to 95° C
 - (ii) Instantaneous heat transfer rate, two minutes after start of cooling
 - (iii) Total heat transferred from the sphere during first two minutes.

Properties of mild steel are: $\rho = 7850 \text{ kg/m}^3$, C = 475 J/kg-K and $\alpha = 0.045 \text{ m}^2/\text{hr}$.

(08 Marks)

Module-3

- 5 a. Why numerical methods are preferred over analytical methods? List the numerical methods which are used in solving heat conduction problems. (04 Marks)
 - b. The boundary temperatures of a thin plate are as shown in Fig.Q5(b). Determine the temperature at the centre of the plate.

....loin.

c. Explain:

- (i) Kirchhoff's law
- (ii) Plank's law
- (iii) Wien's displacement law

(06 Marks)

(06 Marks)

OR

- 6 a. How is Laplace equation for 2D heat conduction approximated to the finite difference equations? (08 Marks)
 - b. Calculate the net radiant heat exchange per unit area for two large parallel plates at temperature of 427°C and 27°C respectively. Take emissivity of hot plate and cold plates are 0.9 and 0.6 respectively. If a polished aluminium shield is placed between them, find percentage reduction in the heat transfer. Take emissivity of shield as 0.4. (08 Marks)

Module-4

- 7 a. With the help of dimensional analysis obtain the fundamental relation between dimensionless numbers required for
 - (i) Forced convection
 - (ii) Natural convection.

(10 Marks)

b. Water at a velocity of 1.5 m/s enters a 2 cm diameter heat exchanger tube at 40°C. The heat exchanger tube wall is maintained at a temperature of 100°C. If the water is heated to a temperature of 80°C in the heat exchanger tube, find the length of the exchanger tube required.

OR

2 of 3

- 8 a. Define an explain the physical significance of the following dimensionless numbers:
 - (i) Grashoff number

(ii)

9

Reynolds number

(04 Marks)

- b. For fluid flow over a flat plate, sketch (i) Velocity boundary layer (ii) Thermal boundary layer. Clearly mention salient points on the figure. (04 Marks)
- c. A tube of 0.036 m OD and 40 cm length is maintained at a uniform temperature of 100°C. It is exposed to air at a uniform temperature of 20°C. Determine the rate of heat transfer from the surface of the tube when (i) the tube is vertical (ii) the tube is horizontal. (08 Marks)

Module-5

- a. What is the importance of NTU effectiveness method? Derive an expression for the effectiveness of a parallel flow heat exchanger. (08 Marks)
- b. Sketch pool boiling curve for water and explain the various regimes in boiling heat transfer. (08 Marks)

OR

- 10 a. List the assumptions made in Nusselt's theory of laminar film condensation on a plane vertical surface. (04 Marks)
 - b. Saturated steam at 80°C condenses as a film on a vertical plate at a temperature of 70°C.
 Calculate the average heat transfer coefficient and the rate of steam condensation per hour.
 Assume that the latent heat of vaporization at 80°C as 2309 kJ/kg.
 (06 Marks)
 - c. An oil cooler for a large diesel engine is to cool engine oil from 60 to 45°C using sea water at an inlet temperature of 20°C with a temperature rise of 15°C. The design load Q = 140 KW and the mean overall heat transfer coefficient based on the outer surface area of the tubes is 70 W/m²°C. Calculate the heat transfer surface area for single pass counter flow and parallel flow arrangement. (06 Marks)

3 of 3